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It is a great challenge of modern physics to understand the rich spectroscopy of hadrons in terms of
quarks and gluons. Today we believe that QCD is the underlying theory but unfortunately no full
solution of its field equations is known. Hence all investigations on the structure of hadrons rely on
some model. In particular non-relativistic models have been successfully applied. The concept of a
quark-antiquark potential being the basis of such models can only be justified in the limit of heavy
quarks. However, surprisingly good results are also obtained for relatively light quark systems.

The experimentally known meson spectra offer the possibility to determine the quark-antiquark
potential. In the literature many analysesl-3) of the meson spectra are reported using
phenomenological or semiphenomenological quark-antiquark potentials. The parameters are adjusted
in order to fit the meson masses and sometimes the leptonic widths. Following the qualitative results
of lattice gauge calculations®) and perturbation theory almost all potentials contain a Coulombic term
at small distances and are monotonically increasing at large distances. However, all calculations use

rather restricted forms of the potential thereby introducing a bias into its shape.

In this contribution we want to apply the exact inverse spectrum method as introduced by Thacker et

al.?) for s-state mesons. This method has been used”) to analyse charmonium which was the most
suitable known qg-system at that time. It is obvious that the inversion based on only two states (J/'¥
and ¥(2s)) cannot give a good reproduction of the confinement potential. Here, we analyse the bb-

system which is the best suited one today. The bb-system has not only a rich known spectrum8) but
because of the heavy b-quark it is the least relativistic quark system.



Thacker et al.7) have studied the inverse problem for confining potentials. They consider one-
dimensional confining potentials symmetric with respect to the origin. Approximating the spectrum of
the potential by N bound states with wave numbers «p, n=1,2,...,N and assuming an asymptotic
value of the potential Eq as well as vanishing reflection in the continuum part of the spectrum they can
exactly determine a potential which should approximate the original confining one. In the three-
dimensional case the radial equation for s-wave scattering can be directly related to the one-
dimensional problem with a symmetric potential. The s-wave bound states (vector mesons with mass
Mpc2) correspond to the odd-parity states in the one dimensional problem,

M2 =Eg - 2‘:;2 ., n=24,..N n even, (1)

where pc? is the reduced mass of the bb-system. The wave numbers kp (n odd) of the even-parity
states can be determined from the wave function ¥(0) of the three-dimensional problem which is

related to the leptonic width I(Y—s e*e-) via the Weisskopf-van Royen formula?),
2 .2
F(r(ns)-> e¥e”) = 16 & 9 focp #a(0)12 @)
M ¢
Here eq is the quark charge, o is the fine structure constant, and fqcp takes into account radiative
chromodynamical corrections10). It has been shown!l) that the knowledge of all masses of s-wave

mesons and their leptonic width fix the potential uniquely.

In a realistic system like bb, however, we know only part of the spectrum. Because of this deficiency
we want to include in our inversion procedure the whole available experimental information and to
treat also particles of other partial waves. For this purpose we embed the inversion method into a least
square fit. We assume the associated one-dimensional problem to have N bound states. The wave
numbers x5 and x4 belonging to the two lowest lying states of odd parity in the one-dimensional
problem can be directly obtained by (1) from the masses of Y(1s) and Y(2s). The leptonic widths (2)
of these particles are used to determine the wave numbers k1 and «3. The remaining wave numbers
K5,K6,...,KN are free parameters which can be optimized by fitting spectral data from other mesons by
minimizing the criterion function

2=y [Qiexp) - QiCheon)]? -

i=1 AQj

where Q; are the theoretical and experimental masses or leptonic widths of the hadrons, respectively.

The weights of the masses in the fitting procedure are given by AQi=AM;+I'/4 where AM; are the
statistical uncertainties®). The total width " of the particle state is also included in AQj in order to
account for channel coupling effects which possible would distort a single channel potential. For the
weights of the leptonic widths we use their statistical uncertainties®). Summarizing our method is a
"model-independent” fit procedure which is based on a parametrised form of the potential directly
obtained from an exact inverse spectrum theory. This method is more versatile than the exact
inversion of Thacker et al.”), since it allows us to treat all meson data simultaneously. Furthermore
the increased number of bound states taken into account improve the simulation of the confining part

of the potential as it will be shown in detail in a forthcoming paper!2).
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Figure 1

Potential obtained by inverting the bottomonium spectrum using different weights y
for the concavity condition.

As mentioned previously we apply the method to the spectrum of bottomonium8) which consists of 8
well established vector particles. With N=12 we get a complete reproduction of all masses and the
leptonic widths (assuming!3) focp=1.5) as given in the Table. The resulting potential (Fig.1) has the

gross structure of conventional qq potentials but exhibits strong oscillations thus violating the

concavity condition!4)
dv d2v
I a2 s 0, 4

which is a general property of static potentials originating from a gauge theory. The origin of the

>0,

oscillations is twofold: i) the truncation to a finite number N of bound states and ii) the inclusion of

states like the Y(4s) and Y(10860). These states are near the BB threshhold and cannot be described
by a single channel model.

Table
The energy eigenvalues of the associated one dimensional problem as obtained by fitting the
bottomonium masses and leptonic widths for different weights taking into account the concavity
condition. All energies are given in MeV.

No. v=01] y=10-15 { +=10-13 No. | particle v=01| v=10-15| y=10-13

1 6469.8 | 6480.2 6978.4 2 Y(1s) 9460.1 9460.1 | 9460.1

3 9688.5 | 9688.0 9710.7 4 Y(2s) | 10022.2 | 10022.2 | 10022.2

51 10139.4 {1 10139.6 | 10149.3 6 Y(3s) | 10355.4 10355.4 | 10355.4

7 1 10446.4 | 10446.5 | 10456.3 8 Y(4s) | 10580.7 { 10580.8 | 10580.1

91 10642.2 |1 10642.6 | 10670.5 10 |r(10860) | 10868.7 10866.2 | 10822.8

11 10912.5 | 10911.5 10919.0 12 |r(11020) | 11020.0 11019.3 | 11007.1
Eo | 11023.3 | 11022.6 | 11020.2 x2 3.4654 3.4768 | 18.6422 |




In order to overcome the difficulty of the second point we can exclude those states which are strongly
affected by coupling effects from the fitting procedure. As a consequence we would retain a too small
number of states and would be unable to perform inversions. Therefore we prefer to fit these critical
states also, but include the concavity condition as additional information. Following Turchin et al.15)

we formulate an apriori probability

Papriori = €Xp {'xa%)riori}’ ()
dZv _(d2vy 12
xaprlorx Y | fdr ( ) | (6)
and minimize the quantity
72 =x2+ Xazpriori . (7

With increasing v the oscillations become less violent (Fig.1). At the same time the resulting mass for
the Y(10860) is decreasing thus indicating that the too large level distance between the Y(4s) and the
Y(10860) state (due to coupling effects) is mainly responsible for the oscillations. Although the
reproduction of the remaining particle masses and leptonic widths is very good the potential still

violates the concavity condition.

The inverse spectrum method yields one special potential out of the family of potentials which can
reproduce the masses and leptonic widths of the known particles in the bb system. Recently, using a
nearly "model-independent" potential modell®) we have shown that the meson masses determine the
qq potential only in a radial range 0.7fm<r<1.7fm. At present we cannot perform a similar error
analysis for the inverse spectrum method because we have too many free parameters compared to the
number of states. Therefore strong correlations occur which require an adequate regularisation

procedure before statements on the uncertainties can be given.

Following the procedure of ref. 15 we have performed a fit of the masses and leptonic widths in the
bb system using the modified Cornell potential
K
V@) =CG+br2B+e)F@, FO)=1+ 2 Cesin(kn),  t=(1+ rio)'1 : 8)
k=1
Assuming the weights AQ; as purely statistical, we can determine the error bars for the potential by

standard techniques!”)

K K
\
AVm2Z>=Y, Y aaé;) |ﬁ aa\;g) |ﬁ €km ©)
k=1 m=l

where K is the total number of parameters varied in the least square fit and 4 denotes the best values
of the parameters.The error matrix g = (ekm) is defined by

2 ~
_1x (8)
=g 1457 (10)
Here, F=M-K is the number of degrees of freedom and g is the curvature matrix
192 2( a) o
“km=73 Jajdam a4 (
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Uncertainties AV(r), as defined by Eq. (9), obtained by fitting the bottomonium
spectrum to the modified Cornell potential of Eq. (8), using different numbers K of
expansion coefficients.

The uncertainties in the potential are shown in Fig. 2 for different numbers K of expansion
coefficients. We notice that the potential is only determined in the radial range 0.4fm<r<1.2fm by the
experimental data of the bottomonium spectrum.

Assuming a flavour independent quark-antiquark potential we have also performed a fit on the masses
of all well established vector mesons16) containing only quarks of one flavour. Additional to our
previous analysis16) we have included in the fit the leptonic widths of the ¥ and Y particles forming a
set of 34 observables which should be described by the potential model. The uncertainties are shown
in Fig. 3 and confirm our previous finding16) that the presently known experimental meson spectral
data determine the potential in the radial range 0.4fm<r<1.5fm.
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Uncertainties AV (r) obtained by fitting all vector meson masses and the leptonic
width of ¥ and Y to the modified Comell potential with K expansion coefficients.



In this contribution we have combined the exact inversion method of Thacker et al.”) with a fitting
procedure in order to use the information contained in known states of other partial waves thus
improving the representation of the confinement part of the potential. The application to the
bottomonium spectrum yields potentials with oscillatory behaviour which violate the concavity
condition. Performing a type of statistical regularisation reduces the oscillations due to coupling
effects. However, oscillations in the potential, which are caused by the incompleteness of the
representation of the spectrum of a confining potential by a finite number of bound states, still remain
and limit its application in non-relativistic quark models. The potential obtained by inversion is one
member of a family of potentials reproducing the bottomonium data. An error analysis in a potential
model which also fits the leptonic widths confirms our previous work based on a fit of masses only
that the potential is determined in the radial range 0.4fm<r<1.5fm. This differs substantially from the
range 0.1fm<r<1.0fm usually given?) by comparing existing potential models with analytically
prescribed shapes. Since calculations in perturbation theory are only valid up to about 0.2 fm it is an
important consequence of our analysis that the extraction of QCD-related parameters from the meson

spectrum requires additional information or assumptions.
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